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Abstract
A new prototype coupled ocean–atmosphere Ensemble Kalman Filter reanalysis product, the Community Earth System Model 
using the Data Assimilation Research Testbed (CESM-DART), is studied by comparing its tropical climate variability to other 
reanalysis products, available observations, and a free-running version of the model. The results reveal that CESM-DART produces 
fields that are comparable in overall performance with those of four other uncoupled and coupled reanalyses. The clearest signature 
of differences in CESM-DART is in the analysis of the Madden–Julian Oscillation (MJO) and other tropical atmospheric waves. 
MJO energy is enhanced over the free-running CESM as well as compared to the other products, suggesting the importance of the 
surface flux coupling at the ocean–atmosphere interface in organizing convective activity. In addition, high-frequency Kelvin waves 
in CESM-DART are reduced in amplitude compared to the free-running CESM run and the other products, again supportive of the 
oceanic coupling playing a role in this difference. CESM-DART also exhibits a relatively low bias in the mean tropical precipitation 
field and mean sensible heat flux field. Conclusive evidence of the importance of coupling on data assimilation performance will 
require additional detailed direct comparisons with identically formulated, uncoupled data assimilation runs.
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1  Introduction

Atmospheric and oceanic data assimilation schemes are 
now routinely combined with climate observations to pro-
duce reanalysis products that are used to quantify and diag-
nose climate variability processes (e.g. Chelliah and Bell 
2004; Carton and Giese 2008; Balmaseda et al. 2013). Until 
recently, these assimilation frameworks have treated the 
atmosphere and ocean independently instead of as a cou-
pled system. Over the past decade, research and operational 
forecasting centers around the world have recognized the 
potential benefits of coupled ocean–atmosphere assimilation 

and rapid progress has been made in efforts to develop 
coupled data assimilation systems (e.g. Penny and Hamill 
2017). Recently, a weakly-coupled data assimilation system 
(Karspeck et al. 2018) was developed at the National Center 
for Atmospheric Research (NCAR) using the Community 
Earth System Model (CESM) in the Data Assimilation 
Research Testbed (DART), which is an Ensemble Adjust-
ment Kalman Filter-based (EAKF) scheme (Anderson et al. 
2009). Invoking such a procedure in an Earth System Model 
could provide new insights into the role of ocean–atmos-
phere coupling on the climate processes that have occurred 
over the historical record.

Surface heat fluxes, momentum flux, and fresh-water flux 
are the primary means for communication between the ocean 
and atmosphere systems. The estimates of these fluxes from 
coupled climate models, however, are frequently cited as 
containing biases and random errors that result in inaccurate 
representations of climate processes and internal modes of var-
iability (e.g. Arnold et al. 2015). The process of data assimila-
tion can adjust the model state variables closer to measured 
data, but assimilation does not assure the improvement of the 
surface fluxes, which are typically diagnostically assessed. A 
coupled data assimilation framework (Penny and Hamill 2017) 
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may improve the estimation of these surface fluxes since they 
transit information between the ocean and atmosphere during 
the assimilation process itself. This may be especially impor-
tant for properly representing climate modes of variability that 
rely on or are affected by the surface fluxes, such as the Mad-
den–Julian Oscillation (MJO) (e.g. Raeder et al. 2012).

The CESM-DART uses a weakly-coupled data assimila-
tion scheme, where state vectors of individual models run 
the ensemble Kalman filter that adjusts their individual state 
vectors, as opposed to a strongly-coupled system where the 
state-vector of the entire coupled system is adjusted with 
each run. The advantage is that by allowing the models to 
be assimilated separately, the individual systems may be 
more likely to retain their independent features while still 
improving surface flux estimates. This is in contrast to a 
strongly-coupled system where mechanisms in one system 
may potentially be improperly adjusted by covariances of 
data from the other system (Frolov et al. 2016).

Previous studies have shown substantial differences 
among various reanalysis products, such as the work of 
Hodges et al. (2011) who highlighted the differences in mid-
latitude storms tracks, and Kim et al. (2014), who examined 
differences in tropical precipitation, intraseasonal variability, 
and MJO representation. Differences in tropical circulation, 
rainfall, MJO characteristics are expected because these 
fields are largely defined by the deep convection in the trop-
ics, which is not directly constrained by observations and is 
highly controlled by widely varying model physics schemes 
(e.g. Subramanian et al. 2011). Hence, the representation of 
the tropical basic state and variability will depend on the dif-
ferent assimilation systems, observation datasets, and model 
physics parameterizations used in the reanalyses systems.

Here we consider the CESM in a data assimilation frame-
work using DART over a prototype 10-year time period. Our 
aim is to evaluate the impact of the coupled data assimilation 
on the estimation of fields relevant to tropical climate and 
its variability in both the atmosphere and ocean. We first 
approach the problem by comparing key surface flux fields 
among five distinct coupled and uncoupled analysis products 
(Table 1), CESM-DART, ECMWF 20th-Century Reanaly-
sis (ERA20C), ECMWF Coupled 20th-Century Reanalysis 
(CERA20C), NCEP/NCAR Reanalysis 1 (R1), and Japanese 

55-Year Reanalysis 55 (JRA55) to determine if the CESM-
DART fluxes exhibit significantly different estimates over 
the traditional analysis products. We also evaluate if the 
CESM-DART analysis results in improved estimates of the 
surface fluxes, which could be associated with the propa-
gation of the coupled error covariance or other aspects of 
the data assimilation procedure. This can be assessed by 
comparing the fields of CESM-DART and the other coupled 
and uncoupled assimilation products with the in-situ obser-
vations-based Objectively Analyzed Air-Sea Flux (OAFlux) 
fields. We then assess the ability of the CESM-DART prod-
uct to represent a key tropical climate mode, the MJO, by 
comparing its differences among the five analysis products. 
We also attempt to assess if some of these differences are 
due to the surface flux field differences or if they are more 
strongly controlled by model physics differences.

In the next section, we explain the reanalysis products and 
the details of CESM-DART. We then present our methodol-
ogy in comparing the products to available observations and 
among themselves. We then describe our results concern-
ing the precipitation field, the surface heat fluxes, equatorial 
wave activity and MJO. We lastly provide a discussion and 
some concluding remarks.

2 � Reanalysis products and CESM‑DART​

Data assimilation is a method in which observations are 
combined with model dynamics to derive a better estimate 
of the state at a given time. The first global, multi-decadal 
reanalysis using a consistent data assimilation method and 
model was produced jointly at the National Center for Envi-
ronmental Prediction (NCEP) and NCAR (Kalnay et al. 
1996). Many reanalyses products have been produced since 
to evaluate and compare with model outputs as well as to 
help improve our understanding of the weather and climate 
system. These include NCEP-Department of Energy (NCEP-
DOE) reanalysis (Kanamitsu et  al. 2002), the ERA20C 
(ECMWF) reanalysis (Uppala et al. 2005), the CERA20C 
(Laloyaux et al. 2017), and the JRA55 (Onogi et al. 2007). 
The large observational network including satellite records 
starting in the late 1970s as well as improvements in our data 

Table 1   Resolution and 
assimilation techniques of each 
reanalysis product

Horizontal resolution DA method

CESM-DART​ 1° 30 member 6 h EnKF
ERA 20C 125 km atm 24 h 4DVar
NCAR R1 T62 3DVar
CERA 20C 125 km atm, 110 km ocn 10 member ensemble with 24 h 

4DVar in atmosphere and 3DVar 
in ocean

JRA 55 TL319 6 h 4DVar
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assimilation techniques have vastly improved the reanalyses 
products. This has led to the production of the most recent 
reanalyses products: the NCEP Climate Forecast System 
Reanalysis (CFSR) (Saha et al. 2010), NASA’s Modern-
Era Retrospective Analysis for Research and Applications 
(MERRA) (Rienecker et al. 2011) and the European Reanal-
ysis Interim Project (ERA-I) (Dee et al. 2011). Comparisons 
among the reanalysis products requires understanding the 
impacts of the various types of data assimilation techniques 
employed and the effects of the oceanic boundary condi-
tions, whether specified or via coupled modeling, on the 
atmosphere.

In this study, we focus on CESM1.1.1, which is a cou-
pled model which combines the community atmospheric 
model version 4 (Gent et al. 2011), with the Community 
Land Model (CLM4), the Community Ice Code (CICE4), 
CESM River Transport Model (RTM), and the LANL 
Parallel Ocean Program (POP2) for a coupled earth cli-
mate model (Hurrell et al. 2013). The DART system is an 
open-source community developed software used to imple-
ment the ensemble adjustment Kalman filter (EAKF) data 
assimilation technique into different models (Anderson et al. 
2009). The application of DART to the CESM (Karspeck 
et al. 2018) provides a novel depiction of climate data for 
the period that it was run (1970–1979). CESM-DART is run 
with a 30-member ensemble, with data assimilated every 6 h 
for atmospheric fields and 24 h for oceanic components. The 
components are coupled together every 24 h. ACARS data 
is used to adjust CAM state vectors and BUFR data is used 
for POP state vectors. Localization and inflation methods are 
explained by Karspeck et al. (2018).

Ensemble Adjustment Kalman Filters allow a model 
to prescribe the error using ensemble variance which can 
then be compared to observational uncertainty. This will 
allow the data assimilation to correct the mean model state 
as well as the ensemble variance. This not only improves 
the accuracy of the model state, but additionally adjusts the 
precision of it by adjusting the ensemble variance towards 
observational uncertainty. This technique becomes increas-
ingly beneficial as the number of ensembles is increased 
(Houtekamer and Mitchell 1998). In contrast to the 3DVar 
and 4DVar DA schemes, the Ensemble Kalman filter uses 
the covariance of the different ensemble members to correct 
its analysis against observation data. The EAKF scheme is 
well described by Anderson (2003) as a sequence of scalar 
computations that involves assimilating single observations 
to adjust the ensemble, and subsequently updating each vari-
able in the model state vector with linear regression. This 
approach is implemented in parallel by the DART frame-
work and is coupled to several modeling systems for assimi-
lation applications (Anderson et al. 2009).

We have selected several of the available reanalysis 
products to compare with CESM-DART. These include the 

uncoupled assimilation products, R1, ERA20C, JRA55, as 
well as the coupled product, CERA20C. The CESM-DART 
reanalysis is limited to the time period January 3rd, 1970 
0:00 UTC and December 31st, 1979 18:00 UTC, and all the 
reanalysis products have atmospheric fields analyzed at 6-h 
intervals. Any unavailable data was bilinearly interpolated 
over to make a continuous dataset. For all data sets, zonal 
and meridional wind variables were gathered with daily 
sampling at 200 hPa and 850 hPa, while surface heat fluxes 
and precipitation were gathered at monthly intervals. R1 has 
a horizontal resolution of ≈ 2.5°, ERA-20C has a horizontal 
resolution of ≈ 125 km, JRA55 has ≈ 55 km resolution, 
CERA20C has ≈ 125 km resolution, and CESM-DART has 
a horizontal resolution of ≈ 1°. The R1 uses 3Dvar, while the 
ERA20C, JRA5, and CERA20C all use incremental 4DVar, 
in contrast to the EAKF of CESM-DART. These different 
characteristics are summarized in Table 1.

Given these different reanalysis products, we now objec-
tively compare and contrast the surface fluxes and tropi-
cal climate behavior between the CESM-DART reanalysis 
and four other reanalyses for the 10-year time period of 
1970–1979, based on the availability of data from CESM-
DART. Note that because these data assimilated products 
span the 1970s, the segment that we are comparing does 
not include remotely sensed satellite data. Therefore since 
that the volume of data that was assimilated is much lower 
than for products that include later periods, the results of our 
analysis may be different for later decades.

3 � Methodology

The combination of looking at surface heat fluxes, tropical 
waves, and MJO events, will give a comprehensive analysis 
of the tropical climate variability for the physical system 
produced by the five reanalyses datasets (Table 1). We sum-
marize the details of our analysis procedures in the following 
subsections.

3.1 � Surface fluxes

The three surface fluxes considered in this study are pre-
cipitation flux, latent heat flux, and sensible heat flux. For 
comparison to model estimates of mean surface fluxes we 
use observation datasets from OAFlux and the Global Pre-
cipitation Climatology Project (GPCP). These in-situ obser-
vation-based products are used to compare against the three 
reanalysis products for a direct evaluation of these fields. 
OAFlux uses SST, humidity, wind fields at 2 m, and air tem-
perature at 2 m to make best guess analysis of latent heat flux 
and sensible heat flux. All fields and products are detrended 
to remove any climate change signature.
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Precipitation fields for the reanalyses are first compared 
against the GPCP product to compare annual means over 
the oceans. The temporal mean for each reanalysis product 
covers the common 1970–1979 period, while the temporal 
mean of the GPCP product covers the entire available data-
set, 1979–2015. Although these are non-overlapping time 
intervals, the basic state structure of tropical precipitation 
should be relatively stable. GPCP products are subtracted 
from the temporal mean of each reanalysis product to show 
the difference maps. Mismatched grids use bilinear interpo-
lation (Jones 1999) to regrid the lower resolution GPCP grid 
to the higher resolution grids.

Since the GPCP product does not span the same period 
as the reanalysis products, the variability of the products can 
only be directly compared against each other. The variability 
is calculated based on the monthly mean precipitation time 
series. The resulting spatial products are compared directly 
using the same bilinear interpolation scheme discussed 
above.

For latent heat flux and sensible heat flux, all reanalyses 
products are compared against the OAFlux product (Yu et al. 
2008), which is treated as truth in this study. The OAFlux 
product is a combination of data-assimilated reanalysis 
products for the time period between 1958–2018, which 
includes the common period of 1970–1979 used in this 
study. Although the direct observations were rather limited 
in the common period, this product was well validated using 
the large numbers of observations from recent decades. This 
lends weight to our regarding the OAFlux fields as observa-
tions in this study (Gelaro et al. 2017).

For these flux analyses, the reanalysis products are con-
verted into monthly time series and have their temporal vari-
ability calculated from those datasets. When compared, the 
higher resolution datasets are bilinearly interpolated to the 
coarser scheme for a direct comparison. Since all the ensem-
ble members of CESM-DART are available, the ensemble 
mean of their temporal means is used to compare with GPCP 
and OAFlux. For all products, the latitude weighted spatial 
correlation and spatial bias against GPCP and OAFlux are 
calculated.

3.2 � MJO metrics and equatorial waves

A variety of higher-frequency tropical atmospheric equato-
rial waves are associated with important energy transport, 
such as MJO, Kelvin waves, and inertia-gravity waves. Since 
all the products are available at subdaily sampling rates, they 
are suitable for comparing their intraseasonal behavior.

We use MJO events as one measure of intraseasonal cou-
pled climate variability. To isolate MJO events, the velocity 
potential MJO (VPM) index is computed using the meth-
ods described in (Ventrice et al. 2013). Velocity potential at 
pressure level 200 hPa, which serves as smoother measure of 

convective activity, is calculated for each reanalysis. Anoma-
lies of the velocity potential and zonal wind anomalies at 
pressure levels 200 hPa and 850 hPa are then band-pass fil-
tered between 20 and 100 days, and symmetrically averaged 
between 15° N and 15° S. The combined EOF is then calcu-
lated for the resulting fields, which provides the structures 
of the coherent meridional variability. The sum of squares 
of the two leading principal components provide the VPM 
index, which is used as the time series of the occurrence of 
MJO events.

This method is applied to each of the five reanalyses 
(including each ensemble member of the CESM-DART rea-
nalysis) as well as a 20-year record of ERA-I between 1991 
and 2010. ERA-I is used as a proxy for true MJO structures 
since it uses data assimilation schemes over a time period 
with many observations and is therefore heavily validated 
(Dee et al. 2011).

Frequency–wavenumber spectra are also computed for 
key daily sampled fields for each data assimilated product 
following the procedure advocated by Wheeler and Kiladis 
(1999) to isolate the spectral peaks that arise relative to a red 
“background spectrum”. Zonal wind fields between 15° N 
and 15° S are taken from each reanalysis product at 850 hPa 
and 200 hPa levels. All fields are first detrended in time 
and then high-pass filtered with a 1-year cutoff. The Fast 
Fourier Transform (FFT) in time and longitude is computed 
for every latitude of the resulting fields to produce the raw 
spectrum. The “background spectrum” is then computed 
from this raw spectrum by heavily smoothing the spectral 
coefficients with a 1-2-1 filter applied roughly ten times in 
both frequency and wavenumber for each reanalysis product. 
The raw spectrum is then decomposed into its equatorially 
symmetric and asymmetric components and the spectral 
coefficients are lightly smoothed by applying a 1-2-1 filter 
only once and only in wavenumber. The resulting symmetric 
component spectrum is then divided by the corresponding 
background spectrum for each reanalysis field. The resulting 
ratio spectrum for each data assimilated product can then 
be compared with each other to search for differences in 
amplitude and propagation rates for various equatorial waves 
relative to the individual product’s red background.

In order to isolate the impact of assimilation on the freely 
propagating waves within CESM, we also ran a 10-year 
non-assimilated CESM run with the same parameter set 
as CESM-DART and computed the same diagnostic. This 
‘Free-CESM’ spectrum can then be compared directly to the 
CESM-DART spectrum.
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4 � Results

4.1 � Precipitation

Figure 1 shows the difference maps of the reanalyses mean 
precipitation relative to GPCP observations. Hashed regions 
show areas in which the difference of mean precipitation 
structures exceed the errors prescribed by GPCP estimates, 
which are also plotted. These high-error areas are largely 
confined to the climatological high-precipitation tropical 
and subtropical regions across all reanalyses, which typi-
cally tend to rain too intensely in the reanalyses. Figure 1 
also reveals that JRA55 and R1 have the largest areas of 

significant bias. Table 2 shows CERA20C has the highest 
correlation with GPCP precipitation structure, while R1 has 
the lowest.

The variability of precipitation also is of interest, which 
was computed as monthly-mean standard deviations around 
the long-term mean. This is shown in Fig. 2 as a five-product 
mean by averaging the precipitation variability from all five 
products. The figure additionally shows how all products 
compare against the averaged variability. CESM-DART 
shows the highest amount of additional variability, while 
CERA20C shows the lowest amount of variability.

4.2 � Surface heat fluxes

Figure 3 shows the difference maps of the temporal mean 
structure of latent heat flux and sensible heat flux, relative 
to the OAFlux. The magnitude and structures of the differ-
ences vary widely among the models, with the largest errors 
associated with JRA55. Among all the products, there is an 
extension of positive bias within the equatorial cold tongue, 
and increased biases within the tropics for both the Atlan-
tic and Indian basins. For sensible heat flux there is broad 
tropical bias across the basins with a reduction in the eastern 
boundary currents.

Fig. 1   Annual mean (1970–
1979) precipitation differ-
ences for the five reanalyses 
relative to GPCP observations 
(1979–2015). All datasets are 
detrended with respect to 1975. 
The error estimates from GPCP 
as shown in the top left. Hashed 
regions in the other panels indi-
cate where the mean difference 
is greater than GPCP error

Table 2   Pattern correlation (latitude weighted) between reanalysis 
products and observations (GPCP and OAFlux) of annual mean pre-
cipitation, latent heat flux, and sensible heat flux

Precip LH SH

CESM-DART​ 0.84 0.96 0.46
ERA 20C 0.80 0.95 0.69
NCAR R1 0.62 0.95 0.67
CERA 20C 0.91 0.97 0.72
JRA 55 0.88 0.97 0.72
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Table 2 shows an overall very high pattern correlation 
in performance for mean latent heat flux across all mod-
els, but with much lower pattern correlations for mean 
sensible heat flux, especially for CESM-DART. Table 3 
additionally quantifies some of the differences seen in 
Fig. 3 by showing the spatial mean error and the rms error 
averaged over two regions, the Pacific and Indian Oceans. 
CERA20C tends to outperform other reanalysis products 
while CESM-DART tends to perform within the range of 
the other products.

The seasonal cycle of the monthly climatology of surface 
heat fluxes was also computed for the five products and com-
pared to that of the OAFlux. Figure 4 shows the differences 
in July bias and January bias, which gives a perspective of 
the magnitude of the error in the seasonal cycle. The largest 
errors in the latent heat flux seasonal cycle magnitude tend 
to occur in the northwestern Pacific and the low-latitude 
South Pacific and Indian Oceans for all the products but 
JRA55, which has much lower amplitude errors. The larg-
est errors in the sensible heat flux seasonal cycle magnitude 
occur in R1 and JRA55, and are smallest in CESM-DART.

4.3 � Equatorial waves

The frequency–wavenumber content of the atmospheric 
equatorial waves is displayed in Fig. 5, which was pro-
duced using the symmetric lower tropospheric zonal wind 
response normalized against the red “background spec-
trum” for all the different reanalyses, which we term the 
“ratio spectra”. The top plot displays the five-product-aver-
age ratio spectrum, with the lower plots showing the spec-
tral deviations from this average. (The physical meaning of 
these deviations is such that a value of 0.05 would mean 
the spectral peak of that product rises 5% higher in power 
above its background red spectrum than does the average 
of the products.) The ratio spectra highlight three types 
of energetic waves. The wavenumber 1-to-2 band, with 
frequencies lower than 0.05, represents the MJO response. 
The response along the linear slope for wavenumbers 2 to 
8 represents the nondispersive equatorial Kelvin waves 
(Gill 1982). Finally the response for wavenumbers − 6 
to − 1 and frequencies 0.15–0.3 represent inertia-gravity 
waves (Gill 1982).

CESM-DART and R1 both exhibit enhanced MJO 
activity compared to the other products, while CERA20C 
has the lowest amplitude MJO peak relative to the mean 

Fig. 2   Monthly-mean stand-
ard deviation of precipitation, 
calculated relative to the annual 
mean climatology (1970–1979), 
shown as a five-product mean 
and differences from that mean 
for each reanalysis product. 
Hashed regions in the other 
panels indicate where the mean 
difference is greater than GPCP 
error
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Fig. 3   Annual mean (1970–
1979) latent (left) and sensible 
(right) surface heat flux differ-
ences for the five reanalyses 
relative to OAFlux observations 
(1970–1979). Differences are 
scaled by a normalization factor 
of 60 W/m2 for latent heat and 
20 W/m2 for sensible heat

Table 3   Spatially averaged 
mean and rms differences 
between reanalysis products 
and observations (OAFlux) of 
annual mean latent heat flux and 
sensible heat flux for Pacific 
Ocean and Indian Ocean

Basin NCAR R1 CESM-DART​ ERA20C CERA 20C JRA55

Precip (mm/day) Pac 0.56 ± 1.0 0.03 ± 0.86 0.62 ± 1.1 0.81 ± 1.7 3.7 ± 2.8
Ind 0.46 ± 0.93 0.29 ± 0.85 0.65 ± 1.2 0.53 ± 1.4 3.3 ± 2.7

Latent heat (W/m2) Pac 19 ± 8.4 7.5 ±  8.5 18 ± 10. 13 ± 12 35 ± 9.4
Ind 19 ± 10. 6.8 ± 12. 25 ± 13. 16 ± 12. 32 ± 16.

Sensible heat (W/m2) Pac 2.9 ± 1.5 4.8 ± 4.3 7.8 ± 2.1 3.5 ± 2.5 12 ± 3.8
Ind 2.9 ± 1.7 6.3 ± 4.2 8.4 ± 2.8 4.6 ± 2.7 13 ± 2.4
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ratio spectrum. In the Kelvin wave band, several models 
tend to exhibit coherent spectral differences that increase 
or decrease the slope of the dispersion relation, indicat-
ing slight differences in preferred propagation speeds for 
each model (R1 producing faster waves, CESM-DART and 
JRA55 producing slower waves). CERA20C and ERA2C 
both exhibit enhanced Kelvin wave energy compared to the 
mean spectrum. CERA20C and ERA20C both exhibit far 
more energy in the IG band than the mean ratio spectrum, 

while R1, CESM-DART and JRA55 all have much weaker 
IG energy.

Figure 6 shows the effect of using DART on CESM 
for upper and lower tropospheric symmetrical zonal wind 
responses. These ratio spectra clearly reveal that data 
assimilation in CESM increases the magnitude of the MJO 
response and dampens the long and slow Kelvin waves with 
wavenumbers around 3. The assimilation process does not 
have a strong effect on Kelvin waves with smaller scales, 

Fig. 4   Differences between July 
and January reanalysis biases 
relative to OAFlux, calculated 
as in Fig. 3
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which differ highly between the reanalysis products in that 
band, as seen in Fig. 5.

4.4 � MJO

The structure of the leading combined EOFs found in the 
formulation of the VPM index is shown in Fig. 7. The basic 
zonal wavenumber-1 structure and regional phasing occurs 
for all the products. However, a surprisingly large disparity 
between the reanalysis products is evident. CESM-DART 
is most similar to JRA55, while R1 generally differs the 
most from the other products. The ensemble spread within 
CESM-DART generally encapsulates the JRA55 structures, 
but not so for the other products. The tropospheric wind 
convergence and divergence centers are shifted eastward for 
R1 and westward for ERA20C and CERA20C compared to 
CESM-DART and JRA55 in the upper tropospheric diver-
gence centers.

The time series of the VPM index for each reanaly-
sis product of presented in Fig. 8. MJO events tend to all 
occur at the same times across all reanalyses. There exist 

Fig. 5   Frequency–wavenumber spectra of equatorially symmetric 
lower tropospheric (850 hPa) zonal winds, computed as a ratio to the 
corresponding red “background spectrum”, and plotted as the five-
product mean ratio spectrum and as differences from that mean ratio 
spectrum for each reanalysis (1970–1979). The power is the spectral 
power of the ratio of two spectra and hence are unitless

Fig. 6   Frequency–wavenumber spectra of equatorially symmetric 
lower tropospheric (850  hPa) zonal winds and upper tropospheric 
(200 hPa) zonal winds, computed as a ratio to the corresponding red 
“background spectrum”, and plotted as the difference between the 
ratio spectrum for CESM-DART and the ratio spectrum for Free-
CESM. The power represents the spectral power of the ratio of two 
spectra and hence are unitless
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significant variations in the amplitudes, however, with indi-
vidual events sometimes varying by 30–50% among certain 
products. CESM-DART is again most similar to JRA55, 
although a few events fall outside the envelop of the ensem-
ble spread. These results show the sensitivity to the assimila-
tion scheme when representing even a dominant and well-
known intraseasonal climate mode.

The composite MJO structure and phasing is frequently 
shown as spatial maps of velocity and convective activ-
ity during eight phases as it propagates around the globe. 
These are constructed by averaging the band-passed MJO 

activity when the MJO index (here, the VPM) exceeds a 
certain value (here, VPM >1.5). Figure 9 shows the differ-
ences between the composites of MJO for the five different 
reanalyses and the composite MJO for ERA-I (taken here 
to represent its true structure). CESM-DART, JRA55, and 
CERA20C exhibit the closest response to the observed in 
upper tropospheric velocity potential while R1 shows the 
largest disparity. The differences in lower troposphere wind 
vectors are less pronounced among the fields, although R1 
again tends to exhibit the largest errors. The phase of the 

Fig. 7   Combined EOF of lower tropospheric zonal winds, upper 
tropospheric zonal winds, and upper tropospheric velocity potential 
for each reanalysis product, computed for the MJO period band in the 
tropics, 1970–1979, following the procedure of Ventrice et al. (2013). 

The blue line shows the ensemble mean of the CESM-DART EOF 
structure with the shading indicating one ensemble standard deviation 
from the mean
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errors reflects somewhat similar behavior found in Fig. 7, 
especially with R1 being shifted too far eastward.

These composite map differences are quantified in 
Table 4, which shows the spatial mean and rms errors of 
each composited MJO field (from Fig. 9) averaged from 
15N to 15S circumglobally. The spatial mean bias of most 
of the fields, compared with ERA-I, is minimal and near 
zero mainly because the fields have wavelike regions of 
positive and negative error. For both seasons, CERA20C 
and JRA55 both exhibit the smallest rms errors in lower 
tropospheric winds. For summer MJO events, CESM-
DART has the smallest velocity potential rms error, 
while R1 has the largest. For winter events, CERA20C 
and JRA55 both outperform the other three products for 
all the fields in terms of rms error.

5 � Discussion and conclusion

In this study, we analyzed a new prototype coupled 
ocean–atmosphere Ensemble Kalman Filter reanalysis 
product of the 1970s (Karspeck et al. 2018) by compar-
ing its tropical climate variability to other reanalysis prod-
ucts, available observations, and a free-running version of 
the model. The results reveal that CESM-DART produces 
fields that are comparable to those of other reanalyses, but 
not overwhelmingly different or highly superior or inferior. 
However, several things stand out that we highlight here.

The clearest signature of the differences in the fields of 
CESM-DART is in the analysis of MJO and other tropical 
atmospheric waves. MJO energy is enhanced over the free-
running CESM (Fig. 6) as well as compared to the other 
products (Fig. 5). This is broadly consistent the study of 
Kim et al. (2014) who showed that R1 and ERA-Interim 
were deficient in MJO energy compared to the more recent 
reanalysis products CFSR, MERRA and NCEP-DOE. Our 
findings suggest that the flux coupling at the ocean–atmos-
phere interface may be important in organizing the convec-
tive activity inherent in MJO. In addition, high-frequency 
free Kelvin waves in CESM-DART are reduced in amplitude 
compared to the Free-CESM run and the other products, 
which may be due to the assimilation procedure itself or 
potentially due to oceanic coupling. These Kelvin waves 
are often overly energetic in free-running climate models 
due to weak convective coupling (e.g., Hung et al. 2013). 
Conclusive evidence, however, of the importance of the cou-
pling could only be achieved by comparison with a separate 
uncoupled CESM-DART run, which is not available but 
should be explored in future work.

An increase in equatorial atmospheric tropical wave fidel-
ity could increase ENSO forecast accuracy, since they con-
stitute one of the primary mechanisms for instigating ENSO 
development. This should also be explored in further studies 
that include seasonal to interannual forecasts using states 
initialized from the coupled product.

Another positive feature of the CESM-DART reanal-
ysis is the relatively low bias it exhibits in the tropical 

Fig. 8   As in Fig. 7, but for the 
corresponding MJO VPM Index 
PC calculated for each reanaly-
sis product
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Fig. 9   Differences in phases through a composite MJO cycle in 
winter months shown as differences for each reanalysis product 
(1970–1979) relative to the corresponding composite computed from 

the ERA-I (1991–2010). The contours indicate velocity potential at 
200 hPa and the vectors indicate 850 hPa winds
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precipitation field. The typical local bias is comparable 
to both CERA20C and ERA20C, and is much lower than 
that of JRA55 and R1 (Fig. 1). Tropical precipitation vari-
ability is also found to be largest in CESM-DART (Fig. 2), 
suggestive of an important feedback between the coupled 
SST field and tropical convection fields. The other coupled 
product, CERA20C, in contrast, had low tropical precipita-
tion variability, but lacked the assimilation of tropospheric 
variables that could aid in organizing convective activity.

An additional highlight of the CESM-DART product 
is that it produced the lowest bias in mean sensible heat 
flux in the tropical regions (Fig. 3). Globally averaged, the 
mean sensible heat flux bias (Table 3) was also comparable 
to the lowest biased products, CERA20C and R1. How-
ever, the lowest overall bias in latent heat fluxes occurred 
in the CERA20C product. We note that these comparisons 
rely on treating OAFlux as observations, when OAFlux 
actually uses both the ERA20C and the R1 reanalysis out-
put in the creation of the product. One would expect that 
this would render a more favorable comparison of OAFlux 
with those two models. But each of the two coupled prod-
ucts yield better results in their own way, supporting the 
idea that coupling can enhance the skill of state estimates.

Radiative fluxes were not studied here, but they are 
known to vary widely among the reanalysis products, 
particularly in the tropical Pacific. Future studies should 
address the potentially important effects of these differ-
ences on the estimation of the state vectors.

When analyzing these results, there are important issues 
to note about the data used and the assimilation frame-
works. Surface flux data is not directly assimilated into 
any of the analysis products, but is estimated in different 
ways. CESM/DART assimilates available wind and tem-
perature measurements from the ACARS record for the 
atmosphere, and salinity and temperature data from BUFR 
records for the ocean, with surface fluxes determined as a 
consequence of the coupled dynamics. While CERA20C 
also produces surface fluxes from coupled dynamics, it 
assimilates only sea surface pressure and marine winds in 

the atmosphere, plus SST and salinity data in the ocean. 
ERA20C, on the other hand, assimilates only sea surface 
pressure and marine winds, while using specified SST to 
produce the surface fluxes. JRA55 and R1 assimilate avail-
able atmospheric data while using specified SST to produce 
the surface fluxes. The often large disparity in surface heat 
flux estimates found here, and their impact on the entire cli-
mate system, is a consequence of these different approaches 
and requires further study to implicate mechanisms.

In conclusion, the CESM-DART framework holds great 
promise for improving reanalysis products by including 
ocean–atmosphere coupling. In addition, the application 
of new analysis techniques, experimental forecasts, and 
complementary control runs, can provide insight on the 
coupling mechanisms involved in producing the assimi-
lated CESM-DART fields. For example, additional analy-
ses with CESM-DART are currently in progress to analyze 
the ensemble members of the state estimates in a reliabil-
ity budget (Rodwell et al. 2016) to determine where and 
when the biases arise the system and how they are linked 
to climate modes of variability. The results of the current 
study and our related work (Eliashiv 2019) will help guide 
the development and improvement of ensemble climate 
forecast strategies for diagnostics and predictions.
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Table 4   Spatially averaged 
mean and rms differences 
between reanalysis products and 
observations (ERA-I) across all 
eight MJO composite phases 
of U850, V850, and VP200 for 
summer and winter composite 
MJO

Reanalysis U850  (m/s) V850 (m/s) VP200 (106 m2/s)

Summer ERA 20C − 0.01 ± 0.37 − 0.01 ± 0.19 − 0.09 ± 1.3
CESM-DART​ 0.00 ± 0.37 − 0.01 ± 0.19 − 0.00 ± 0.70
NCAR R1 0.00 ± 0.51 − 0.01 ± 0.23 − 0.01 ± 1.9
CERA 20C − 0.01 ± 0.05 − 0.00 ± 0.02 − 0.03 ± 1.2
JRA55 − 0.01 ± 0.07 − 0.00 ± 0.03 − 0.03 ± 1.8

Winter ERA 20C − 0.00 ± 0.37 0.00 ± 0.19 0.00 ± 1.4
CESM-DART​ − 0.00 ± − 0.40 − 0.01 ± 0.18 0.00 ± 0.72
NCAR R1 0.00 ± 0.51 0.00 ± 0.21 0.00 ± 2.0
CERA 20C 0.01 ± 0.03 − 0.00 ± 0.02 − 0.02 ± 0.48
JRA 55 0.01 ± − 0.04 − 0.00 ± 0.02 − 0.01 ± 0.43
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